20,373 research outputs found

    Local order and magnetic field effects on the electronic properties of disordered binary alloys in the Quantum Site Percolation limit

    Full text link
    Electronic properties of disordered binary alloys are studied via the calculation of the average Density of States (DOS) in two and three dimensions. We propose a new approximate scheme that allows for the inclusion of local order effects in finite geometries and extrapolates the behavior of infinite systems following `finite-size scaling' ideas. We particularly investigate the limit of the Quantum Site Percolation regime described by a tight-binding Hamiltonian. This limit was chosen to probe the role of short range order (SRO) properties under extreme conditions. The method is numerically highly efficient and asymptotically exact in important limits, predicting the correct DOS structure as a function of the SRO parameters. Magnetic field effects can also be included in our model to study the interplay of local order and the shifted quantum interference driven by the field. The average DOS is highly sensitive to changes in the SRO properties, and striking effects are observed when a magnetic field is applied near the segregated regime. The new effects observed are twofold: there is a reduction of the band width and the formation of a gap in the middle of the band, both as a consequence of destructive interference of electronic paths and the loss of coherence for particular values of the magnetic field. The above phenomena are periodic in the magnetic flux. For other limits that imply strong localization, the magnetic field produces minor changes in the structure of the average DOS.Comment: 13 pages, 9 figures, 31 references, RevTex preprint, submitted to Phys. Rev.

    Kinect as an access device for people with cerebral palsy: A preliminary study

    Get PDF
    Cerebral palsy (CP) describes a group of disorders affecting the development of movement and posture, causingactivity limitation. Access to technology can alleviate some of these limitations. Many studies have used vision- based movement capture systems to overcome problems related to discomfort and fear of wearing devices. Incontrast, there has been no research assessing the behavior of vision-based movement capture systems in peoplewith involuntary movements. In this paper, we look at the potential of the Kinect sensor as an assistive technologyfor people with cerebral palsy. We developed a serious game, called KiSens Números, to study the behavior ofKinect in this context and eighteen subjects with cerebral palsy used it to complete a set of sessions. The resultsof the experiments show that Kinect filters some of peoples involuntary movements, confirming the potential ofKinect as an assistive technology for people with motor disabilities

    Differentiability of correlations in Realistic Quantum Mechanics

    Full text link
    We prove a version of Bell's Theorem in which the Locality assumption is weakened. We start by assuming theoretical quantum mechanics and weak forms of relativistic causality and of realism (essentially the fact that observable values are well defined independently of whether or not they are measured). Under these hypotheses, we show that only one of the correlation functions that can be formulated in the framework of the usual Bell theorem is unknown. We prove that this unknown function must be differentiable at certain angular configuration points that include the origin. We also prove that, if this correlation is assumed to be twice differentiable at the origin, then we arrive at a version of Bell's theorem. On the one hand, we are showing that any realistic theory of quantum mechanics which incorporates the kinematic aspects of relativity must lead to this type of \emph{rough} correlation function that is once but not twice differentiable. On the other hand, this study brings us a single degree of differentiability away from a relativistic von Neumann no hidden variables theorem.Comment: Final version, published in JM

    MSSM Forecast for the LHC

    Get PDF
    We perform a forecast of the MSSM with universal soft terms (CMSSM) for the LHC, based on an improved Bayesian analysis. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises from the Bayesian analysis itself when the experimental value of MZM_Z is considered. This allows to scan the whole parameter space, allowing arbitrarily large soft terms. Still the low-energy region is statistically favoured (even before including dark matter or g-2 constraints). Contrary to other studies, the results are almost unaffected by changing the upper limits taken for the soft terms. The results are also remarkable stable when using flat or logarithmic priors, a fact that arises from the larger statistical weight of the low-energy region in both cases. Then we incorporate all the important experimental constrains to the analysis, obtaining a map of the probability density of the MSSM parameter space, i.e. the forecast of the MSSM. Since not all the experimental information is equally robust, we perform separate analyses depending on the group of observables used. When only the most robust ones are used, the favoured region of the parameter space contains a significant portion outside the LHC reach. This effect gets reinforced if the Higgs mass is not close to its present experimental limit and persits when dark matter constraints are included. Only when the g-2 constraint (based on e+e−e^+e^- data) is considered, the preferred region (for μ>0\mu>0) is well inside the LHC scope. We also perform a Bayesian comparison of the positive- and negative-μ\mu possibilities.Comment: 42 pages: added figures and reference

    Boltzmann entropy of a Newtonian Universe

    Full text link
    A dynamical estimate is given for the Boltzmann entropy of the Universe, under the simplifying assumptions provided by Newtonian cosmology. We first model the cosmological fluid as the probability fluid of a quantum-mechanical system. Next, following current ideas about the emergence of spacetime, we regard gravitational equipotentials as isoentropic surfaces. Therefore gravitational entropy is proportional to the vacuum expectation value of the gravitational potential in a certain quantum state describing the matter contents of the Universe. The entropy of the matter sector can also be computed. While providing values of the entropy that turn out to be somewhat higher than existing estimates, our results are in perfect compliance with the upper bound set by the holographic principle.Comment: 15 page

    The health of SUSY after the Higgs discovery and the XENON100 data

    Get PDF
    We analyze the implications for the status and prospects of supersymmetry of the Higgs discovery and the last XENON data. We focus mainly, but not only, on the CMSSM and NUHM models. Using a Bayesian approach we determine the distribution of probability in the parameter space of these scenarios. This shows that, most probably, they are now beyond the LHC reach . This negative chances increase further (at more than 95% c.l.) if one includes dark matter constraints in the analysis, in particular the last XENON100 data. However, the models would be probed completely by XENON1T. The mass of the LSP neutralino gets essentially fixed around 1 TeV. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises automatically from the careful Bayesian analysis itself, and allows to scan the whole parameter space. In this way, we can explain and resolve the apparent discrepancies between the previous results in the literature. Although SUSY has become hard to detect at LHC, this does not necessarily mean that is very fine-tuned. We use Bayesian techniques to show the experimental Higgs mass is at ∼2 σ\sim 2\ \sigma off the CMSSM or NUHM expectation. This is substantial but not dramatic. Although the CMSSM or the NUHM are unlikely to show up at the LHC, they are still interesting and plausible models after the Higgs observation; and, if they are true, the chances of discovering them in future dark matter experiments are quite high

    LHC and dark matter phenomenology of the NUGHM

    Get PDF
    We present a Bayesian analysis of the NUGHM, a supersymmetric scenario with non-universal gaugino masses and Higgs masses, including all the relevant experimental observables and dark matter constraints. The main merit of the NUGHM is that it essentially includes all the possibilities for dark matter (DM) candidates within the MSSM, since the neutralino and chargino spectrum -and composition- are as free as they can be in the general MSSM. We identify the most probable regions in the NUHGM parameter space, and study the associated phenomenology at the LHC and the prospects for DM direct detection. Requiring that the neutralino makes all of the DM in the Universe, we identify two preferred regions around mχ10=1 TeV,  3 TeVm_{\chi_1^0}= 1\ {\rm TeV},\; 3\ {\rm TeV}, which correspond to the (almost) pure Higgsino and wino case. There exist other marginal regions (e.g. Higgs-funnel), but with much less statistical weight. The prospects for detection at the LHC in this case are quite pessimistic, but future direct detection experiments like LUX and XENON1T, will be able to probe this scenario. In contrast, when allowing other DM components, the prospects for detection at the LHC become more encouraging -- the most promising signals being, beside the production of gluinos and squarks, the production of the heavier chargino and neutralino states, which lead to WZ and same-sign WW final states -- and direct detection remains a complementary, and even more powerful, way to probe the scenario.Comment: The Sommerfeld enhancement has been included in the computation of the relic density and in the discussion of indirect-detection limits. Some references have been adde
    • …
    corecore